3 research outputs found

    Design of an Integrated-Photonics RF Beamformer for Multi-Beam Satellite Synthetic Aperture Radar

    Get PDF
    This paper presents the design and the performance analysis of a photonics-based beamformer for a spaceborne synthetic aperture radar implementing the scan-on-receive functionality. The considered device is a hybrid photonic integrated circuit composed of actives in InP and passives in TriPleX™, realizing the fast beamforming of three receiver beams out of 12 radio-frequency input signals and providing their simultaneous down-conversion to intermediate frequency. The analysis considers as main performance indicators the gain, the noise figure, and the dynamic range of the photonics-based beamformer, and demonstrates the device compliance to the application requirements and its suitability for satellite missions

    Design and performance estimation of a photonic integrated beamforming receiver for scan-on-receive synthetic aperture radar

    Get PDF
    Synthetic aperture radar is a remote sensing technology finding applications in a wide range of fields, especially related to Earth observation. It enables a fine imaging that is crucial in critical activities, like environmental monitoring for natural resource management or disasters prevention. In this picture, the scan-on-receive paradigm allows for enhanced imaging capabilities thanks to wide swath observations at finer azimuthal resolution achieved by beamforming of multiple simultaneous antenna beams. Recently, solutions based on microwave photonics techniques demonstrated the possibility of an efficient implementation of beamforming, overcoming some limitations posed by purely electronic solutions, offering unprecedented flexibility and precision to RF systems. Moreover, photonics-assisted RF beamformers can nowadays be realized as integrated circuits, with reduced size and power consumption with respect to digital beamforming approaches. This paper presents the design analysis and the challenges of the development of a hybrid photonic-integrated circuit as the core element of an X-band scan-on-receive spaceborne synthetic aperture radar. The proposed photonic-integrated circuit synthetizes three simultaneous scanning beams on the received signal, and performs the frequency down-conversion, guaranteeing a compact 15 cm2-form factor, less than 6 W power consumption, and 55 dB of dynamic range. The whole photonics-assisted system is designed for space compliance and meets the target application requirements, representing a step forward toward a deeper penetration of photonics in microwave applications for challenging scenarios, like the observation of the Earth from space

    Millimeter-wave generation using hybrid silicon photonics

    Get PDF
    Technological innovation with millimeter waves (mm waves), signals having carrier frequencies between 30 and 300 GHz, has become an increasingly important research field. While it is challenging to generate and distribute these high frequency signals using all-electronic means, photonic techniques that transfer the signals to the optical domain for processing can alleviate several of the issues that plague electronic components. By realizing optical signal processing in a photonic integrated circuit (PIC), one can considerably improve the performance, footprint, cost, weight, and energy efficiency of photonics-based mm-wave technologies. In this article, we detail the applications that rely on mm-wave generation and review the requirements for photonics-based technologies to achieve this functionality. We give an overview of the different PIC platforms, with a particular focus on hybrid silicon photonics, and detail how the performance of two key components in the generation of mm waves, photodetectors and modulators, can be optimized in these platforms. Finally, we discuss the potential of hybrid silicon photonics for extending mm-wave generation towards the THz domain and provide an outlook on whether these mm-wave applications will be a new milestone in the evolution of hybrid silicon photonics
    corecore